Меню
Бесплатно
Главная  /  Витамины  /  Газообразное, жидкое и твердое состояния вещества. Жидкие тела: примеры и свойства. Какие бывают жидкие тела Вещество определение окружающий мир 3

Газообразное, жидкое и твердое состояния вещества. Жидкие тела: примеры и свойства. Какие бывают жидкие тела Вещество определение окружающий мир 3

Газ (газообразное состояние) Газ – это агрегатное состояние вещества, характеризующееся очень слабыми связями между составляющими его частицами (молекулами, атомами или ионами), а также их большой подвижностью.

Особенности газов Легко сжимаются. Не имеют собственной формы и объема Любые газы смешиваются друг с другом в любых соотношениях.

Число Авогадро Значение NA = 6, 022…× 1023 называется числом Авогадро. Это универсальная постоянная для мельчайших частиц любого вещества.

Следствие из закона Авогадро 1 моль любого газа при н. у. (760 мм рт. ст. и 00 С) занимает объем 22, 4 л. Vm = 22. 4 л/моль – молярный объем газов

Важнейшие природные смеси газов Состав воздуха: φ(N 2) = 78%; φ(O 2) = 21%; φ(CO 2) = 0. 03 Природный газ – это смесь углеводородов.

Получение водорода. В промышленности: Крекинг и риформинг углеводородов в процессе переработки нефти: C 2 H 6 (t = 10000 С) → 2 C + 3 H 2 Из природного газа. CH 4 + O 2 + 2 H 2 O → 2 CO 2 +6 H 2 O

Водород H 2 В лаборатории: Действие разбавленных кислот на металлы. Для проведения такой реакции чаще всего используют цинк и разбавленную серную кислоту: Zn + 2 HCl → Zn. Cl 2 + H 2 Взаимодействие кальция с водой: Ca + 2 H 2 O → Ca(OH)2 + H 2 Гидролиз гидридов: Ca. H 2 + 2 H 2 O → Ca(OH)2 +2 H 2 Действие щелочей на цинк или алюминий: Zn + 2 Na. OH + 2 H 2 O Na 2 + H 2

Свойства водорода Самый лёгкий газ, он легче воздуха в 14, 5 раз. Водород обладает самой высокой теплопроводностью среди газообразных веществ. Его теплопроводность примерно в семь раз выше теплопроводности воздуха. Молекула водорода двухатомна - Н 2. При нормальных условиях - это газ без цвета, запаха и вкуса.

Кислород В промышленности: Из воздуха. Основным промышленным способом получения кислорода, является криогенная ректификация. В лаборатории: Из перманганата калия (марганцовки): 2 KMn. O 4 = K 2 Mn. O 4 + Mn. O 2 + О 2 ; 2 H 2 O 2 = 2 Н 2 О + О 2.

Свойства кислорода При нормальных условиях кислород - это газ без цвета, вкуса и запаха. 1 л его имеет массу 1, 429 г. Немного тяжелее воздуха. Слабо растворяется в воде и спирте Хорошо растворяется в расплавленном серебре. Является парамагнетиком.

Оксид углерода (IV) В лаборатории: Из мела, известняка или мрамора: Na 2 CO 3 + 2 HCl = 2 Na. Cl + CO 2 +H 2 O Сa. CO 3 + HCl = Ca. Cl 2 + CO 2 + H 2 O В природе: Фотосинтез в растениях: C 6 H 12 O 6 + 6 O 2 = 6 CO 2 + 6 H 2 O

Оксид углерода (IV) Оксид углерода (IV) (углекислый газ) – это бесцветный газ, без запаха, со слегка кисловатым вкусом. Тяжелее воздуха, растворим в воде, при сильном охлаждении кристаллизуется в виде белой снегообразной массы – «сухого льда» . При атмосферном давлении он не плавится, а испаряется, температура сублимации -78 °С.

Аммиак (н. у.) – это бесцветный газ с резким характерным запахом (запах нашатырного спирта). Аммиак почти вдвое легче воздуха, растворимость NH 3 в воде чрезвычайно велика. В лаборатории аммиак получают: Взаимодействием щелочей с солями аммония: NH 4 Cl + Na. OH = Na. Cl + H 2 O + NH 3 В промышленности: Взаимодействие водорода и азота: 3 H + N = 2 NH

Этилен В лаборатории: Дегидратация этилового спирта В промышленности: Крекинг нефтепродуктов: C 4 H 10 → C 2 H 6 + C 2 H 4 этан этен

Этилен - бесцветный газ, обладающий слабым сладковатым запахом и относительно высокой плотностью. Этилен горит светящимся пламенем; с воздухом и кислородом образует взрывоопасную смесь. В воде этилен практически нерастворим.

Получение, собирание и распознавание газов Название газа (формула) Водород (H 2) Кислород (O 2) Углекислый газ (CO 2) Аммиак (NH 3) Этилен (С 2 H 4) Физические Лабораторный Способ свойства способ собирания получения Способ Значение распознаван газообразног ия о вещества

Задачи Задача № 1. 13, 5 грамм цинка (Zn) взаимодействуют с соляной кислотой (HCl). Объемная доля выхода водорода (H 2) составляет 85 %. Вычислить объем водорода, который выделился? Задача № 2. Имеется газовая смесь, массовые доли газа в которой равны (%): метана – 65, водорода – 35. Определите объемные доли газов в этой смеси.

Задача № 1 1) Запишем уравнение реакции взаимодействия цинка (Zn) с соляной кислотой (HCl): Zn + 2 HCl = Zn. Cl 2 + H 2 2) n (Zn) = 13, 5 / 65 = 0, 2 (моль). 3) 1 моль Zn вытесняет 1 моль водорода (H 2), а 0, 2 моль Zn вытесняет х моль водорода (H 2). Получаем: V теор. (H 2) = 0, 2 ∙ 22, 4 = 4, 48 (л). 4) Вычислим объем водорода практический по формуле: V практ. (H 2) = 85 ⋅ 4, 48 / 100 = 3, 81 (л).

Задача № 2 Имеется газовая смесь, массовые доли газа в которой равны (%): метана – 65, водорода – 35. Определите объемные доли газов в этой смеси.

Полимеры бывают естественного (растительные и животные ткани) и искусственного (пластмассы, целлюлоза, стекловолокно и др.) происхождения.

Так же, как и в случае обычных молекул, система макромоле­кул. образующих полимер, стремится к наиболее вероятному состоянию - устойчивому равновесию, соответствующему ми­нимуму свободной энергии. Следовательно, в принципе поли­меры также должны иметь структуру в виде кристаллической решетки. Однако ввиду громоздкости и сложности макромолекул лишь в немногих случаях удалось получить совершенные макро- молекулярные кристаллы. В большинстве случаев полимеры сос­тоят из кристаллических и аморфных областей.

Жидкое состояние характерно тем, что потенциальная энергия притяжения молекул несколько превосходит по абсолютному значению их кинетическую энергию. Силы притяжения между молекулами в жидкости обеспечивает удержание молекул в объе­ме жидкости. Вместе с тем молекулы в жидкости не связаны меж­ду собой стационарными устойчивыми связями, как в кристаллах. Они плотно заполняют занимаемое жидкостью пространство, поэтому жидкости практически несжимаемы и обладают достаточно высокой плотностью. Группы молекул могут изменять свое взаимное положение, что обеспечивает текучесть жидкостей. Свойство жидкости сопротивляться течению называется вяз­костью. Жидкостям свойственна диффузия и броуновское движе­ние, однако в значительно меньшей степени, чем газам.

Объем, занимаемый жидкостью, ограничен поверхностью. Так как при заданном объеме минимальной поверхностью обладает шар, то жидкость в свободном состоянии (например, в невесо­мости) принимает форму шара.

Жидкости обладают некоторой структурой, которая, однако, выражена гораздо слабее, чем у твердых тел. Важнейшим свой­ством жидкостей является изотропия свойств. Простая идеальная модель жидкости пока не создана.

Существует промежуточное состояние между жидкостями и кристаллами, которое называется жидкокристаллическим. Особен­ностью жидких кристаллов с молекулярной точки зрения является вытянутая, веретенообразная форма их молекул, что приводит к анизотропии их свойств.

Выделяют два типа жидких кристаллов - нематики и смекти­ки. Смектики характерны наличием параллельных слоев молекул, отличающихся друг от друга упорядоченностью структуры. У нематиков упорядоченность обеспечивается ориентацией моле­кул. Анизотропия свойств жидких кристаллов обусловливает их важные оптические свойства. Жидкие кристаллы могут, напри­мер, быть прозрачными в одном направлении и непрозрачными в другом. Важно, что ориентацией молекул жидких кристаллов и их слоев легко можно управлять с помощью внешних воздействий (например, температуры, электрических и магнитных полей).

Газообразное состояние вещества возникает в том случае, когда


кинетическая энергия теплового движения молекул превосходит потенциальную энергию их связи. Молекулы при этом стремятся удалиться друг от друга. Газ не имеет структуры, занимает весь предоставленный ему объем, легко сжимаем; в газах легко проис­ходит диффузия.

Свойства веществ, находящихся в газообразном состоянии, объясняет кинетическая газовая теория. Основные ее постулаты состоят в следующем:

Все газы состоят из молекул;

Размеры молекул пренебрежимо малы по сравнению с рас­стояниями между ними;

Молекулы постоянно находятся в состоянии хаотического (броуновского) движения;

Между столкновениями молекулы сохраняют постоянную скорость движения; траектории между столкновениями - отрезки прямых линий;

Столкновение между молекулами и молекул со стенками сосуда являются идеально упругими, т.е. полная кинетическая энергия соударяющихся молекул остается неизменной.

Рассмотрим упрощенную модель газа, подчиняющегося приве­денным постулатам. Такой газ называется идеальным газом. Пусть идеальный газ в количестве N одинаковых молекул, каждая из которых имеет массу m , находится в сосуде кубической формы с длиной ребра l (рис. 5.14). Молекулы движутся хаотически; средняя скорость их движения <v >. Для упрощения разобьем все молекулы на три равные группы и предположим, что они движут­ся только в направлениях, перпендикулярных двум противопо­ложным стенкам сосуда (рис. 5.15).


Рис. 5.14.

Каждая из молекул газа, движущаяся со скоростью <v > при абсолютно упругом соударении со стенкой сосуда, изменит нап­равление движения на обратное, не изменив скорость. Импульс молекулы <р > = m <v > становится равным при этом - m <v >. Изменение импульса в каждом столкновении, очевидно, равно . Сила, действующая во время этого столкновения, равна F = -2m <v >/Δt . Полное изменение импульса при столкновении со стенками всех N /3молекул равно . Определим интервал времени Δt , в течение которого произойдут все N/3 столкновения: Д t = 2//< v >. Тогда среднее значение силы, действующей на любую стенку,

Давление р газа на стенку определим как отношение силы <F > к площади стенки l 2:

где V = l 3 – объем сосуда.

Таким образом, давление газа обратно пропорционально его объему (напомним, что эмпирически этот закон установили Бойль и Мариотт).

Перепишем выражение (5.4) в виде

Здесь - средняя кинетическая энергия молекул газа. она пропорциональна абсолютной температуре Т :

где k – постоянная Больцмана.

Подставив (5.6) в (5.5), получим

Удобно перейти от числа молекул N к числу молей n газа, напомним, что (N А – число Авогадро), и тогда

где R = kN A - - универсальная газовая постоянная.

Выражение (5.8) есть уравнение состояния классического идеального газа для п молей. Данное уравнение, записанное для произвольной массы m газа


где М - молярная масса газа, называется уравнением Клапей­рона-Менделеева (см. (5.3)).

Реальные газы подчиняются этому уравнению в ограниченных пределах. Дело в том, что уравнения (5.8) и (5.9) не учитывают межмолекулярное взаимодействие в реальных газах - силы Ван- дер-Ваальса.

Фазовые переходы . Вещество, в зависимости от условий, в ко­торых оно находится, может изменять агрегатное состояние, или, как говорят, переходить из одной фазы в другую. Такой переход называется фазовым переходом.

Как указывалось выше, важнейшим фактором, определяющим состояние вещества, является его температура Т , характеризу­ющая среднюю кинетическую энергию теплового движения моле­кул и давление р . Поэтому, состояния вещества и фазовые пере­ходы анализируют по диаграмме состояний, где по осям отклады­ваются значения Т и р , а каждая точка на координатной плоскос­ти определяет соответствующее этим параметрам состояние дан­ного вещества. Проанали­зируем типичную диаграм­му (рис. 5.16). Кривые ОА , АВ, АК разделяют состоя­ния вещества. При доста­точно низких температурах практически все вещества находятся в твердом кристаллическом состоянии.


На диаграмме выделены две характерные точки: А и К . Точка А называется тройной точкой; при соот­ветствующих температуре (Т т) и давлении (Р т) в ней находится в равновесии одновременно газ, жидкость и твердое тело.

Точка К обозначает критическое состояние. В этой точке (при Т кр и Р кр) исчезает разница между жидкостью и газом, т.е. пос­ледние имеют одинаковые физические свойства.

Кривая ОА является кривой сублимации (возгонки); при соответствующих давлении и температуре осуществляется переход газ - твердое тело (твердое тело - газ), минуя жидкое состояние.

При давлении Р т < Р < Р кр переход из газообразного в твердое состояние (и наоборот) может осуществляться только через жид­кую фазу.

Кривая АК соответствует испарению (конденсации). При соответствующих давлении и температуре осуществляется переход «жидкость – газ» (и обратно).

Кривая АВ является кривой перехода «жидкость - твердое тело» (плавления и кристаллизации). Данная кривая не имеет конца, так как всегда жидкое состояние отличается от крис­таллического по структуре.

Приведем для иллюстрации форму поверхностей состояний вещества в переменных р, V, Т (рис. 5.17), где V - объем вещества


Буквами Г, Ж, Т обозначены участки поверхностей, точки которых, соответствуют газообразному, жидкому или твердому состояниям, а участки поверхностей Т-Г, Ж-Т, Т-Ж - двухфаз­ным состояниям. Очевидно, если спроецировать линии раздела между фазами на координатную плоскость РТ, получим фазовую диаграмму (см. рис. 5.16).

Квантовая жидкость - гелий . При обычных температурах в макроскопических телах из-за выраженного хаотического тепло­вого движения квантовые эффекты неощутимы. Однако с умень­шением температуры эти эффекты могут выходить на первый план и проявляются макроскопически. Так, например, кристаллы характерны наличием тепловых колебаний ионов, находящихся в узлах кристаллической решетки. С уменьшением температуры амплитуда колебаний уменьшается, однако даже при приближе­нии к абсолютному нулю колебания, вопреки классическим представлениям, не прекращаются.

Объяснение этого эффекта следует из соотношения неопреде­ленностей. Уменьшение амплитуды колебаний означает умень­шение области локализации частицы, т. е. неопределенности ее координат. В соответствии с соотношением неопределенностей это приводит к увеличению неопределенности импульса. Таким образом, «остановка» частицы запрещена законами квантовой механики.

Этот сугубо квантовый эффект проявляется в существовании вещества, остающегося в жидком состоянии даже при температу­рах, близких к абсолютному нулю. Такой «квантовой» жидкостью является гелий. Энергии нулевых колебаний оказывается доста­точно, чтобы разрушить кристаллическую решетку. Однако при давлении порядка 2,5 МПа жидкий гелий все-таки кристал­лизуется.

Плазма. Сообщение атомам (молекулам) газа извне значитель­ной энергии приводит к ионизации, т. е. распаду атомов на ионы и на свободные электроны. Такое состояние вещества называется плазмой.

Ионизация возникает, например, при сильном нагреве газа, что приводит к значительному увеличению кинетической энергии атомов, при электрическом разряде в газе (ударная ионизация заряженными частицами), при воздействии на газ электромагнит­ного излучения (автоионизация). Плазма, получаемая при сверх­высоких температурах, называется высокотемпературной.

Поскольку ионы и электроны в плазме несут некомпенсированные электрические заряды, их взаимное влияние существенно. Между заряженными частицами плазмы существует не парное (как в газе), а коллективное взаимодействие. Благодаря этому плазма ведет себя как своеобразная упругая среда, в которой легко возбуждаются и распространяются различные колебания и волны

Плазма активно взаимодействует с электрическими и магнит­ными полями. Плазма - наиболее распространенное состояние вещества во Вселенной. Звезды состоят из высокотемпературной плазмы, холодные туманности - из низкотемпературной. Слабо ионизированная низкотемпературная плазма имеется в ионосфере Земли.

Литература к главе 5

1. Ахиезер А. И., Рекало Я. П. Элементарные частицы. - М.: Наука, 1986.

2. Азшлов А. Мир углерода. - М.: Химия, 1978.

3. Бронштейн М. П. Атомы и электроны. - М.: Наука, 1980.

4. Бениловский В. Д. Эти удивительные жидкие кристаллы. - М: Просвещение, 1987.

5. Власов Н. А. Антивещество. - М.: Атомиздат, 1966.

6. Кристи Р., Питти А. Строение вещества: введение в совре­менную физику. - М.: Наука, 1969.

7. Крейчи В. Мир глазами современной физики. - М.: Мкр, 1984.

8. Намбу Е. Кварки. - М.: Мир, 1984.

9. Окунь Л. Б. α, β, γ, …,: элементарное введение в физику элементарных частиц. - М.: Наука, 1985.

10. Петров Ю. И. Физика малых частиц. - М.: Наука, 1982.

11. И, Пурмалъ А. П. и др. Как превращаются вещества. - М.: Наука, 1984.

12. Розенталь И. М. Элементарные частицы и структура все­ленной. - М.: Наука, 1984.

13. Смородинский Я. А. Элементарные частицы. - М.: Знание, 1968.

Тела, вещества, частицы

Любой предмет, любое живое существо можно назвать телом. Камень, кусок сахара, дерево, птица, проволока - это тела. Перечислить все тела невозможно, их существует бесчисленное множество. Солнце, планеты, Луна тоже тела. Их называют небесными телами.

Тела можно разделить на две группы.

Тела, созданные самой природой, называются естественные тела .
Тела, созданные руками человека, называются искусственные тела .

Рассмотри рисунки. Под естественными телами закрась кружочки зелёным цветом, под искусственными - коричневым.

Тела состоят из веществ . Кусок сахара - тело, а сам сахар - вещество. Алюминиевая проволока - тело, алюминий - вещество. Есть тела, которые образованы не одним, а несколькими или многими веществами.

Вещества - это то, из чего состоят тела.

Различают твёрдые, жидкие и газообразные вещества .
Сахар, алюминий - примеры твёрдых веществ. Вода - жидкое вещество. Воздух состоит из нескольких газообразных веществ (газов).

Запиши, из какого вещества сделано тело.

Какое тело имеет определённую форму?
Ответ: Твердые тела имеют постоянную форму.

Заполни таблицу

Алюминий, серебро, тетрадь, древесина, телевизор, чайник, вода, пила, шкаф, крахмал.

Вещества, а значит и тела состоят из частиц.
Каждое вещество состоит из особых частиц, которые по размерам и форме отличаются от частиц других веществ.
Учёные установили, что между частицами есть промежутки. В твёрдых веществах эти промежутки совсем маленькие, в жидких побольше, а в газах еще больше. В любом веществе все частицы движутся.
Частицы можно изобразить с помощью моделей, например шариков.


Притяжение и отталкивание частиц определяют их взаимное расположение в веществе. А от расположения частиц существенно зависят свойства веществ. Так, глядя на прозрачный очень твердый алмаз (бриллиант) и на мягкий черный графит (из него изготавливают стержни карандашей), мы не догадываемся, что оба вещества состоят из совершенно одинаковых атомов углерода. Просто в графите эти атомы расположены иначе, чем в алмазе.

Взаимодействие частиц вещества приводит к тому, что оно может находиться в трех состояниях: твердом , жидком и газообразном . Например, лед, вода, пар. В трех состояниях может находиться любое вещество, но для этого нужны определенные условия: давление, температура. Например, кислород в воздухе - газ, но при охлаждении ниже -193 °C он превращается в жидкость, а при температуре -219 °C кислород - твердое вещество. Железо при нормальном давлении и комнатной температуре находится в твердом состоянии. При температуре выше 1539 °C железо становится жидким, а при температуре выше 3050 °C - газообразным. Жидкая ртуть, используемая в медицинских термометрах, при охлаждении до температуры ниже -39 °C становится твердой. При температуре выше 357 °C ртуть превращается в пар (газ).

Превращая металлическое серебро в газ, его напыляют на стекло и получают «зеркальные» очки.

Какими свойствами обладают вещества в различных состояниях?

Начнем с газов, в которых поведение молекул напоминает движение пчел в рое. Однако пчелы в рое самостоятельно изменяют направление движения и практически не сталкиваются друг с другом. В то же время для молекул в газе такие столкновения не только неизбежны, но происходят практически непрерывно. В результате столкновений направления и значения скорости движения молекул изменяются.

Результатом такого движения и отсутствия взаимодействия частиц при движении является то, что газ не сохраняет ни объема, ни формы , а занимает весь предоставленный ему объем. Каждый из вас посчитает сущей нелепицей утверждения: «Воздух занимает половину объема комнаты» и «Я накачал воздух в две трети объема резинового шарика». Воздух, как и любой газ, занимает весь объем комнаты и весь объем шарика.

А какие свойства имеют жидкости? Проведем опыт.

Перельем воду из одной мензурки в мензурку другой формы. Форма жидкости изменилась , но объем остался тем же . Молекулы не разлетелись по всему объему, как это было бы в случае с газом. Значит, взаимное притяжение молекул жидкости существует, но оно не удерживает жестко соседние молекулы. Они колеблются и перескакивают из одного места в другое, чем и объясняется текучесть жидкостей.

Наиболее сильным является взаимодействие частиц в твердом теле. Оно не дает возможности частицам разойтись. Частицы лишь совершают хаотические колебательные движения около определенных положений. Поэтому твердые тела сохраняют и объем, и форму . Резиновый мяч будет сохранять форму шара и объем, куда бы его не поместили: в банку, на стол и т. д.

Н2О - вода, Жидкий металл - ртуть! Жидкое состояние обычно считают промежуточным между твёрдым телом и газом: газ не сохраняет ни объём, ни форму, а твёрдое тело сохраняет и то, и другое .

Форма жидких тел может полностью или отчасти определяться тем, что их поверхность ведёт себя как упругая мембрана. Так, вода может собираться в капли. Но жидкость способна течь даже под своей неподвижной поверхностью, и это тоже означает несохранение формы (внутренних частей жидкого тела) .

Молекулы жидкости не имеют определённого положения, но в то же время им недоступна полная свобода перемещений. Между ними существует притяжение, достаточно сильное, чтобы удержать их на близком расстоянии.

Вещество в жидком состоянии существует в определённом интервале температур, ниже которого переходит в твердое состояние (происходит кристаллизация либо превращение в твердотельное аморфное состояние - стекло) , выше - в газообразное (происходит испарение) . Границы этого интервала зависят от давления.

Как правило, вещество в жидком состоянии имеет только одну модификацию. (Наиболее важные исключения - это квантовые жидкости и жидкие кристаллы.) Поэтому в большинстве случаев жидкость является не только агрегатным состоянием, но и термодинамической фазой (жидкая фаза) .

Все жидкости принято делить на чистые жидкости и смеси. Некоторые смеси жидкостей имеют большое значение для жизни: кровь, морская вода и др. Жидкости могут выполнять функцию растворителей.
[править]
Физические свойства жидкостей
Текучесть

Основным свойством жидкостей является текучесть. Если к участку жидкости, находящейся в равновесии, приложить внешнюю силу, то возникает поток частиц жидкости в том направлении, в котором эта сила приложена: жидкость течёт. Таким образом, под действием неуравновешенных внешних сил жидкость не сохраняет форму и относительное расположение частей, и поэтому принимает форму сосуда, в котором находится.

В отличие от пластичных твёрдых тел, жидкость не имеет предела текучести: достаточно приложить сколь угодно малую внешнюю силу, чтобы жидкость потекла.
Сохранение объёма

Одним из характерных свойств жидкости является то, что она имеет определённый объём (при неизменных внешних условиях) . Жидкость чрезвычайно трудно сжать механически, поскольку, в отличие от газа, между молекулами очень мало свободного пространства. Давление, производимое на жидкость, заключенную в сосуд, передаётся без изменения в каждую точку объёма этой жидкости (закон Паскаля, справедлив также и для газов) . Эта особенность, наряду с очень малой сжимаемостью, используется в гидравлических машинах.

Жидкости обычно увеличивают объём (расширяются) при нагревании и уменьшают объём (сжимаются) при охлаждении. Впрочем, встречаются и исключения, например, вода сжимается при нагревании, при нормальном давлении и температуре от 0 °C до приблизительно 4 °C.
Вязкость

Кроме того, жидкости (как и газы) характеризуются вязкостью. Она определяется как способность оказывать сопротивление перемещению одной из частей относительно другой - то есть как внутреннее трение.

Когда соседние слои жидкости движутся относительно друг друга, неизбежно происходит столкновение молекул дополнительно к тому, которое обусловлено тепловым движением. Возникают силы, затормаживающие упорядоченное движение. При этом кинетическая энергия упорядоченного движения переходит в тепловую - энергию хаотического движения молекул.

Жидкость в сосуде, приведённая в движение и предоставленная самой себе, постепенно остановится, но её температура повысится.