Меню
Бесплатно
Главная  /  Масла  /  Энергия взаимодействия системы точечных зарядов. Энергия заряженного проводника. Потенциальная энергия взаимодействия точечных зарядов Потенциальная энергия взаимодействия системы зарядов

Энергия взаимодействия системы точечных зарядов. Энергия заряженного проводника. Потенциальная энергия взаимодействия точечных зарядов Потенциальная энергия взаимодействия системы зарядов

Силы взаимодействия электрических зарядов консервативны, следовательно, система электрических зарядов обладает потенциальной энергией.

Пусть даны два точечных неподвижных заряда q 1 и q 2 , находящиеся на расстоянии r друг от друга. Каждый из зарядов в поле другого заряда обладает потенциальной энергией

; , (4.1)

где j 1,2 и j 2,1 – соответственно потенциалы, создаваемые зарядом q 2 в точке нахождения заряда q 1 и зарядом q 1 в точке нахождения заряда q 2 .

, а . (4.3)

Следовательно,

. (4.4)

Для того чтобы в уравнение энергии системы оба заряда входили симметрично, выражение (4.4) можно записать в виде

. (4.5)

Добавляя к системе зарядов последовательно заряды q 3 , q 4 и т.д., можно убедиться, что в случае N зарядов потенциальная энергия системы

, (4.6)

где j i – потенциал создаваемый в точке нахождения q i всеми зарядами, кроме i - го.

При непрерывном распределении зарядов в элементарном объеме dV находится заряд dq = r×dV. Для определения энергии взаимодействия заряда dq можно применить формулу (4.6), перейдя в ней от суммы к интегралу:

, (4.7)

где j – потенциал в точке элемента объема dV.

Надо отметить, что между формулами (4.6) и (4.7) существует принципиальное различие. Формула (4.6) учитывает только энергию взаимодействия между точечными зарядами, но не учитывает энергии взаимодействия элементов заряда каждого из точечных зарядов между собой (собственную энергию точечного заряда). Формула (4.7) учитывает как энергию взаимодействия между точечными зарядами, так и собственную энергию этих зарядов. При расчете энергии взаимодействия точечных зарядов она сводится к интегралам по объему V i точечных зарядов:

, (4.8)

где j i - потенциал в любой точке объема i-го точечного заряда;

j i = j i ¢ + j i с, (4.9)

где j i ¢ - потенциал, созданный другими точечными зарядами в этой же точке;

j i с – потенциал, созданный частями i-го точечного заряда в данной точке.

Так как точечные заряды можно представить сферически симметричными, то

(4.10)

где W ¢ определяется по формуле (4.6).

Значение собственной энергии зарядов зависит от законов распределения зарядов и от величины зарядов. Например, при равномерном сферическом распределении зарядов с поверхностной плотностью s

.

Следовательно,

. (4.11)

Из формулы (4.11) видно, что при R®0 величина W с ®¥. Это означает, что собственная энергия точечного заряда равна бесконечности. Это приводит к серьезным недостаткам понятия "точечный заряд".

Таким образом, формулу (4.6) можно применять для анализа взаимодействия точечных зарядов, поскольку она не содержит их собственной энергии. Формула (4.7) для непрерывного распределения заряда учитывает всю энергию взаимодействия, поэтому является более общей.

При наличии поверхностных зарядов вид формулы (4.7) несколько изменяется. Подынтегральное выражение этой формулы равно и имеет смысл потенциальной энергии, которой обладает элемент заряда dq, находясь в точке с потенциалом j. Эта потенциальная энергия не зависит от того, является ли dq элементом объемного или поверхностного заряда. Поэтому для поверхностного распределения dq = s×dS. Следовательно, для энергии поля поверхностных зарядов

Лекция 2.6.

Энергия взаимодействия зарядов

Рассмотрим систему из двух точечных зарядов. Энергию взаимодействия можно трактовать как энергию первого заряда в поле второго (cм.(2.1.3))

Поскольку оба представления равноправны, энергию взаимодействия этих зарядов можно записать следующим образом

где - i -тый точечный заряд системы, - потенциал поля, созданного всеми остальными зарядами системы, кроме i -того, в точке расположения заряда .

Если заряды распределены непрерывно, то, представляя систему зарядов как совокупность элементарных зарядов и переходя к интегрированию, получим выражение

где - энергия взаимодействия друг с другом элементарных зарядов первого шарика, - энергия взаимодействия друг с другом элементарных зарядов второго шарика, - энергия взаимодействия элементарных зарядов первого шарика с элементарными зарядами второго шарика. Энергии и называют собственными энергиями зарядов и . Энергию называют энергией взаимодействия зарядов и .

Энергия уединенного проводника и конденсатора

Пусть проводник имеет заряд и потенциал . Энергия проводника . Поскольку проводник является эквипотенциальной областью, то потенциал выносится из-под знака интеграла. Окончательно

Энергия конденсатора.

Пусть и - заряд и потенциал положительно заряженной обкладки, а и - соответственно отрицательной. Тогда энергия конденсатора с учетом и запишется

Энергия электрического поля.

Физический смысл энергии конденсатора это не что иное, как энергия электрического поля сосредоточенного внутри него . Получим выражение для энергии плоского конденсатора через напряженность. Будем пренебрегать краевыми эффектами. Воспользуемся формулой , и выражением для емкости плоского конденсатора .



Подынтегральное выражение здесь имеет смысл энергии, заключенной в объеме. Это подводит к важной идее о локализации энергии в самом поле.

Это предположение находит подтверждение в области переменных полей. Именно переменные поля могут существовать независимо от возбудивших их электрических зарядов и распространяться в пространстве в виде электромагнитных волн, которые переносят энергию.

Таким образом, носителем энергии является само поле .

Анализируя последнее выражение, можем ввести объемную плотность энергии, т.е. энергии, заключенной в единице объема

. (2.6.9)

Мы получили (2.6.8) и (2.6.9) в частном случае однородного, изотропного диэлектрика в однородном электрическом поле. В этом случае векторы и сонаправлены и можно записать

Потенциальная энергия взаимодействия системы точечных зарядов и полная электростатическая энергия системы зарядов

Анимация

Описание

Потенциальную энергию взаимодействия двух точечных зарядов q 1 и q 2 , находящихся в вакууме на расстоянии r 12 друг от друга можно вычислить по:

(1)

Рассмотрим систему, состоящую из N точечных зарядов: q 1 , q 2 ,..., q n .

Энергия взаимодействия такой системы равна сумме энергий взаимодействия зарядов взятых попарно:

. (2)

В формуле 2 суммирование производится по индексам i и k (i № k ). Оба индекса пробегают, независимо друг от друга, значения от 0 до N . Слагаемые, для которых значение индекса i совпадает со значением индекса k не учитываются. Коэффициент 1/2 поставлен потому, что при суммировании потенциальная энергия каждой пары зарядов учитывается дважды. Формулу (2) можно представить в виде:

, (3)

где j i - потенциал в точке нахождения i -го заряда, создаваемый всеми остальными зарядами:

.

Энергия взаимодействия системы точечных зарядов, вычисляемая по формуле (3), может быть как положительной, так и отрицательной. Например она отрицательная для двух точечных зарядов противоположного знака.

Формула (3) определяет не полную электростатическую энергию системы точечных зарядов, а только их взаимную потенциальную энергию. Каждый заряд q i , взятый в отдельности обладает электрической энергией. Она называется собственной энергией заряда и представляет собой энергию взаимного отталкивания бесконечно малых частей, на которые его можно мысленно разбить. Эта энергия не учитывается в формуле (3). Учитывается только работа затрачиваемая на сближение зарядов q i , но не на их образование.

Полная электростатическая энергия системы точечных зарядов учитывает также работу, на образование зарядов q i из бесконечно малых порций электричества, переносимых из бесконечности. Полная электростатическая энергия системы зарядов всегда положительная. Это легко показать на примере заряженного проводника. Рассматривая заряженный проводник как систему точечных зарядов и учитывая одинаковое значение потенциала в любой точке проводника, из формулы (3) получим:

Эта формула дает полную энергию заряженного проводника, которая всегда положительна (при q>0 , j >0 , следовательно W>0 , если q<0 , то j <0 , но W>0 ).

Временные характеристики

Время инициации (log to от -10 до 3);

Время существования (log tc от -10 до 15);

Время деградации (log td от -10 до 3);

Время оптимального проявления (log tk от -7 до 2).

Диаграмма:

Технические реализации эффекта

Техническая реализация эффекта

Для наблюдения энергии взаимодействия системы зарядов достаточно подвесить на ниточках на расстоянии порядка 5 см друг от друга два легких проводящих шарика и зарядить их от расчески. Они отклонятся, то есть повысят свою потенциальную энергию в поле земного тяготения, что и делается за счет энергии их электростатического взаимодействия.

Применение эффекта

Эффект настолько фундаментален, что без преувеличения можно считать, что он применяется кв любой электротехнической и радиоэлектронной аппаратуре, использующий зарядовые накопители, то есть конденсаторы.

Литература

1. Савельев И.В. Курс общей физики.- М.: Наука, 1988.- Т.2.- С.24-25.

2. Сивухин Д.В. Общий курс физики.- М.: Наука, 1977.- Т.3. Электричество.- С.117-118.

Ключевые слова

  • электрический заряд
  • точечный заряд
  • потенциал
  • потенциальная энергия взаимодействия
  • полная электрическая энергия

Разделы естественных наук:

14) Потенциальная энергия заряда в электрическом поле. Работу, совершаемую силами электрического поля при перемещении положительного точечного заряда q из положения 1 в положение 2, представим как изменение потенциальной энергии этого заряда:

где Wп1 и Wп2 – потенциальные энергии заряда q в положениях 1 и 2. При малом перемещении заряда q в поле, создаваемом положительным точечным зарядом Q, изменение потенциальной энергии равно

При конечном перемещении заряда q из положения 1 в положение 2, находящиеся на расстояниях r1 и r2 от заряда Q,

Если поле создано системой точечных зарядов Q1, Q2,¼, Qn, то изменение потенциальной энергии заряда q в этом поле:

Приведённые формулы позволяют найти только изменение потенциальной энергии точечного заряда q, а не саму потенциальную энергию. Для определения потенциальной энергии необходимо условиться, в какой точке поля считать ее равной нулю. Для потенциальной энергии точечного заряда q, находящегося в электрическом поле, созданном другим точечным зарядом Q, получим

где C – произвольная постоянная. Пусть потенциальная энергия равна нулю на бесконечно большом расстоянии от заряда Q (при r ® ¥), тогда постоянная C = 0 и предыдущее выражение принимает вид

При этом потенциальная энергия определяется как работа перемещения заряда силами поля из данной точки в бесконечно удаленную. В случае электрического поля, создаваемого системой точечных зарядов, потенциальная энергия заряда q:

Потенциальная энергия системы точечных зарядов. В случае электростатического поля потенциальная энергия служит мерой взаимодействия зарядов. Пусть в пространстве существует система точечных зарядов Qi (i = 1, 2, ... , n). Энергия взаимодействия всех n зарядов определится соотношением

где r i j - расстояние между соответствующими зарядами, а суммирование производится таким образом, чтобы взаимодействие между каждой парой зарядов учитывалось один раз.

Магнитные взаимодействия: опыты Эрстеда и Ампера; магнитное поле; сила Лоренца, индукция магнитного поля; силовые линии магнитного поля; магнитное поле, создаваемое движущимся с постоянной скоростью точечным зарядом.

Магнитное поле - силовое поле, действующее на движущиеся электрические заряды и на тела, обладающие магнитным моментом, независимо от состояния их движения , магнитная составляющая электромагнитного поля

Магнитное поле может создаваться током заряженных частиц и/или магнитными моментами электронов в атомах (и магнитными моментами других частиц, хотя в заметно меньшей степени) (постоянные магниты).

Опыт Эрстеда показал, что электрические токи могут действовать на магниты, однако природа магнита в то время была совершенно таинственной. Ампер и другие вскоре открыли взаимодействие электрических токов друг с другом, проявляющееся, в частности, как притяжение между двумя параллельными проводами, по которым текут одинаково направленные токи. Это привело Ампера к гипотезе, что в магнитном веществе имеются постоянно циркулирующие электрические токи. Если такая гипотеза справедлива, то результат опыта Эрстеда можно объяснить взаимодействием гальванического тока в проволоке с микроскопическими токами, которые сообщают стрелке компаса особые свойства

Сила Лоренца - сила, с которой, в рамках классической физики, электромагнитное поледействует на точечную заряженную частицу. Иногда силой Лоренца называют силу, действующую на движущийся со скоростью заряд лишь со стороны магнитного поля, нередко же полную силу - со стороны электромагнитного поля вообще , иначе говоря, со стороны электрического и магнитного полей. Выражается в СИ как:

Для непрерывного распределения заряда, сила Лоренца принимает вид:

где d F - сила, действующая на маленький элемент dq .

ИНДУКЦИЯ МАГНИТНОГО ПОЛЯ - векторная величина, являющаяся силовой характеристикой магнитного поля (его действия на заряженные частицы) в данной точке пространства. Определяет, с какой силой магнитное поле действует на заряд , движущийся со скоростью .

Более конкретно, - это такой вектор, что сила Лоренца , действующая со стороны магнитного поля на заряд , движущийся со скоростью , равна

где косым крестом обозначено векторное произведение, α - угол между векторами скорости и магнитной индукции (направление вектора перпендикулярно им обоим и направлено поправилу буравчика).

Действие магнитных полей на электрические токи: закон Био-Савара-Лапласа-Ампера и его применение для расчета силы, действующей со стороны однородного магнитного поля на отрезок тонкого прямого проводника с током; формула Ампера и ее значение в метрологии.

Рассмотрим произвольный проводник,в котором протекают токи:

dF= *ndV=[ ]*dV

З-н Био-Савара-Ампера для объемного тока:dF=jBdVsin . dF перпендикулярно ,т.е . направленно к нам. Возьмем тонкий проводник: , тогда для линейного эл-а тока з-н запишется в виде: dF=I [ ], т.е. dF=IBdlsin .

Задача 1! Имеется однородное магнитное поле. В нем нах-я отрезок провода,который имеет l и I.

d =I [ ], dF=IBdlsin , F=IBsin =IBlsin -сила Ампера.

1 Ампер-сила тока,при протекании которого по 2 || длинным,тонким проводникам,находящимся на расстоянии 1 м друг от друга действует сила равная 2*10^-7 Н на каждый метр их длины.

Задача 2! Есть 2 || длинных проводника, где l>>d,тогда d = , d d , . Тогда ф-а Ампера: *l.

Магнитный диполь: физическая модель и магнитный момент диполя; магнитное поле, создаваемое магнитным диполем; силы, действующие со стороны однородного и неоднородного магнитных полей на магнитный диполь.

ДИПОЛЬ МАГНИТНЫЙ аналог диполя электрического, к-рый можно представлять себе как два точечных магн. заряда , расположенных на расстоянии l друг от друга. Характеризуется дипольным моментом, равным по величине и направленным от .

Поля, создаваемые равными Д. м. вне области источников в вакууме (или в любой иной среде, магн. проницаемость к-рой =1), одинаковы, однако в средах с совпадение достигается, если только принять, что , т. е. считать, что дипольный момент зарядового Д. м. зависит от проницаемости

38. Теорема Гаусса для магнитного поля: интегральная и дифференциальная формы, физический смысл теоремы. Релятивистский характер магнитного поля: магнитные взаимодействия как релятивистское следствие электрических взаимодействий; взаимные преобразования электрических и магнитных полей.

Отсутствие в природе магнитных зарядов приводит к тому, что линии вектора В не имеют ни начала, ни конца. Поток вектора В через замкнутую поверхность должен быть равен нулю. Таким образом, для любого магнитного поля и произвольной замкнутой поверхности S имеет место условие

Эта формула выражает теорему Гаусса для вектора В : поток вектора магнитной индукции через любую замкнутую поверхность равен нулю.

В интегральной форме

1. Поток вектора электрического смещения через любую замкнутую поверхность, окружающую некоторый объем, равен алгебраической сумме свободных зарядов, находящихся внутри этой поверхности

Пусть два точечных заряда q 1 и q 2 находятся в вакууме на расстоянии r друг от друга. Можно показать, что потенциальная энергия их взаимодействия даётся формулой:

W = kq 1 q 2 /r (3)

Мы принимаем формулу (3) без доказательства. Две особенности данной формулы следует обсудить.

Во-первых, где находится нулевой уровень потенциальной энергии? Ведь потенциальная энергия, как видно из формулы (3), в нуль обратиться не может. Но на самом деле нулевой уровень существует, и находится он на бесконечности. Иными словами, когда заряды расположены бесконечно далеко друг от друга, потенциальная энергия их взаимодействия полагается равной нулю (что логично - в этом случае заряды уже «не взаимодействуют»). Во-вторых, q 1 и q 2 - это снова алгебраические величины зарядов, т.е. заряды с учётом их знака.

Например, потенциальная энергия взаимодействия двух одноимённых зарядов будет положительной. Почему? Если мы отпустим их, они начнут разгоняться и удаляться друг от друга.

Их кинетическая энергия возрастает, стало быть потенциальная энергия - убывает. Но на бесконечности потенциальная энергия обращается в нуль, а раз она убывает к нулю, значит - она является положительной.

А вот потенциальная энергия взаимодействия разноимённых зарядов оказывается отрицательной. Действительно, давайте удалим их на очень большое расстояние друг от друга - так что потенциальная энергия равна нулю - и отпустим. Заряды начнут разгоняться, сближаясь, и потенциальная энергия снова убывает. Но если она была нулём, то куда ей убывать? Только в сторону отрицательных значений.

Формула (3) помогает также вычислить потенциальную энергию системы зарядов, если число зарядов больше двух. Для этого нужно просуммировать энергии каждой пары зарядов. Мы не будем выписывать общую формулу; лучше проиллюстрируем сказанное простым примером, изображённым на рис. 8

Рис. 8.

Если заряды q 1 , q 2 , q 3 находятся в вершинах треугольника со сторонами a, b, c, то потенциальная энергия их взаимодействия равна:

W = kq 1 q 2 /a + kq 2 q 3 /b + kq 1 q 3 /c

Потенциал

Из формулы W = - qEx мы видим, что потенциальная энергия заряда q в однородном поле прямо пропорциональна этому заряду. То же самое мы видим из формулы W = kq 1 q 2 /r потенциальная энергия заряда q 1 , находящегося в поле точечного заряда q 2 , прямо пропорциональна величине заряда q 1 . Оказывается, это общий факт: потенциальная энергия W заряда q в любом электростатическом поле прямо пропорциональна величине q:

Величина ц уже не зависит от заряда, является характеристикой поля и называется потенциалом:

Так, потенциал однородного поля E в точке с абсциссой x равен:

Напомним, что ось X совпадает с линией напряжённости поля. Мы видим, что с ростом x потенциал убывает. Иными словами, вектор напряжённости поля указывает направление убывания потенциала. Для потенциала поля точечного заряда q на расстоянии r от него имеем:

Единицей измерения потенциала служит хорошо известный вам вольт. Из формулы (5) мы видим, что В = Дж / Кл.

Итак, теперь у нас есть две характеристики поля: силовая (напряжённость) и энергетическая (потенциал). У каждой из них имеются свои преимущества и недостатки. Какую именно характеристику удобнее использовать - зависит от конкретной задачи.