Меню
Бесплатно
Главная  /  Диета   /  Механизмы изменения функции скелетных мышц при долговременной адаптации. Адаптация организма к мышечной деятельности. Срочная и долговременная адаптация Боль на утро после тренировки

Механизмы изменения функции скелетных мышц при долговременной адаптации. Адаптация организма к мышечной деятельности. Срочная и долговременная адаптация Боль на утро после тренировки

Интенсивность и длительность мышечной работы в значительной степени определяются функциональными возможностями мышц, вы­полняющих эту работу.

Варианты мышечного ответа на наг­рузку обусловлены прежде всего тем, что мышца как целое состо­ит из отдельных дви­гательных единиц, обладающих различными физиологическими характеристиками, различиями в метаболизме и структуре .

Медленные волокна (типа I) обладают очень высокой активностью окислительных ферментов и большим числом митохондрий, т. е. являются волокнами оксидативного типа энер­гетики. Но они имеют низкую активность АТФазы миозина и низкую активность гликолитических ферментов.

Быстрые волокна типа IIа обладают высокой активностью АТФазы и гликолитичес­ких ферментов, но активность окислительных ферментов у них ни­же и количество митохондрий меньше, чем у волокон I типа; их называют волокнами «гликолитического» типа энергетики.

Быстрые волокна типа IIб имеют активность АТФазы, меньшую, чем у типа IIа, но более высокую, чем у типа I волокон; они обладают высо­кой активностью гликолитическнх ферментов и высокой активно­стью окислительных ферментов, т. е. имеют оксидативно-гликолитический характер энергетического обмена.

У быстрых волокон вы­сокие АТФазная активность миозина и скорость сокращения сочетаются с большим объемом саркоплазматического ретикулума (СПР) и более высокой интенсивностью транспорта Са+, чем у медленных.

Окислительный потенциал волокон тесным образом связан с васкуляризацией и содержанием в них миоглобина . Медленные волокна обладают более высоким содержанием мио­глобина и более развитым капиллярным руслом .

Функциональные и биохимические свойства мышцы находятся в прямой зависимости от природы иннервации, т. е. от параметров иннервирующих мотонейронов.

Функциональное значение дифференциации мы­шечных волокон заключается прежде всего в приспособленности к слабым и длительным («позным») или кратким и сильным («фазическим») напряжениям. Связь свойств моторных единиц с пара­метрами мотонейронов, и в частности с порогами их возбудимости, обеспечивает автоматический «выбор» соответствующих активируе­мых моторных единиц под влиянием сигнала при качественно раз­ных видах нагрузки. Вместе с тем зависимость структуры и функции мышцы от характера иннервации и возмож­ность их перестройки в соответствии с изменением параметров приходящих по нерву рабочих стимулов, составляет важную осно­ву для приспособления двигательного аппарата в процессе трени­ровки к разным видам мышечной нагрузки.

Структурные функциональные и биохимические свойства мышцы находятся в прямой зависимости от характера иннервации, что составляет важную осно­ву для приспособления двигательного аппарата в процессе трени­ровки к разным видам мышечной нагрузки.

Срочная адаптация. Факторы, определяющие функцию скелетных мышц при нагрузке

Три основных фактора определяют интенсивность и длительность мышечной работы на уровне ске­летных мышц: 1) число и тип активируемых ДЕ, 2) уровень биохимических процессов, обеспечивающих образование энергии в мышечных клетках, 3) уровень кровоснабжения мышцы.

Развиваемая мышцей при нагрузке сила зависит от числа акти­вированных ДЕ и частоты их сокращения . При нара­стании нагрузки, вначале решающим момен­том для увеличения силы является рост числа мобилизованных ДЕ; затем - увеличение частоты импульсации мотонейронов. При этом максимальное число активируемых ДЕ и частота их импульсации зависят от состояния регуляторных мотор­ных центров и степени торможения отдельных мотонейронов, ко­торая определяется супраспинальной и проприоцептивной актив­ностью. Важная роль ЦНС в адаптации мышц к нагрузке определяется еще и тем, что при си­ловых напряжениях в сокращение могут включаться, помимо от­ветственных за «полезную» силу мышц-агонистов, мышцы-антаго­нисты, что может как увеличивать, так и снижать развиваемую силу. Степень или отсутствие этого явления зависит от совершен­ства межмышечной координации, реализующейся также на уровне ЦНС.

У нетренированного человека при адаптации к силовым напря­жениям максимальное число вовлеченных в сокращение ДЕ составляет всего 30-50% от имеющихся и развиваемая сила мала, в то время как у тренированного надлежащим образом человека число мобилизованных ДЕ при силовых на­пряжениях возрастает до 80- 90% и более, а сила по сравнению с нетренированным больше в 2-4 раза. Это опре­деляется развитием адаптационных изменений на уровне ЦНС, приводящих к повышению способности моторных центров мобили­зовать большее число ДЕ и к совершенствованию меж­мышечной координации.

В мышцах, где преобладают мед­ленные ДЕ, сила может поддерживаться дольше, чем в мышцах с преобладанием быстрых единиц. При работе со значительным силовым напряжением выносливость невелика из-за утомления быстрых ДЕ мышечная дея­тельность не может продолжаться более 10- 30 с.

Мышечная работа связана со значительным увеличением расхо­да энергии в мышцах.

Центральное место в механизме энергообеспечения мышечных клеток занимает переход АТФ - АДФ. В анаэробных условиях АДФ рефосфорилируется в АТФ с помощью КФ или в процессе гликогенолиза и гликолиза с образованием лактата. В аэробных условиях АДФ рефосфорилируется в АТФ при использовании в качестве «горючего» главным образом гликогена, глюкозы или свободных жирных кислот. Окисление белков для энергообеспечения в норме возрастает при изнуряющих тяжелых нarpyзкax.

При нагрузке в скелетных мышцах очень быстро происходит снижение содержания АТФ и КФ, возрастает ресинтез АТФ и потребление О 2 , активируется гликогенолиз и гликолиз, что сопровождается снижением содержания в мышце гликогена и ростом содержания пирувата и лактата, наблюдает­ся увеличение концентрации глю­козы и глюкозо-6-фосфата. Важной чертой энергеобмена мышц при нагрузке в нетренированном организме является от­носительное преобладание интенсивности гликогенолиза и гликолиза над интенсивностью аэробных процессов.

Ограничение работоспособности скелетных мышц и развитие утомления связаны с падением содержания АТФ, КФ и гликогена в мышцах и накоплением в них лактата. Чем выше способность митохондрий утилизировать пируват, тем меньше пи­рувата перейдет в лактат и тем меньше лактата накопится в мышцах и крови. Т.о., мощность системы мнтохондрий скелетной мышцы является звеном, лимитирующим интенсивность и длительность работы мышцы.

Предполагается, что лактат и снижение рН способствуют увеличению свободного окисления, теплопродукции и тем са­мым снижению эффективности использования О 2 и субст­ратов в мышцах. То есть, лак­тат угнетающее действует на функцию митохондрий, вследствие ацидоза и перехода Са 2+ в митохондрии, накоплению его в митохондриях и разобщению окисления с фосфорилированием.

Другой механизм лимитирующего работоспособность мышц действия лактата связывают с влиянием ацидоза на процесс сокращения: избыток ионов водорода уменьшает образование комп­лексов Са 2+ -тропонин и тем самым препятствует формированию достаточного количества актомиозиновых «мостиков», определяю­щих силу сокращения.

В последнее время к факторам, ограничивающим работоспособность мышц при интенсивной работе, относят накопление в мышцах и крови аммиака. Аммиак угнетающе дейст­вует как на саму мышцу, так и на ЦНС.

Фактором, который может лимитировать работоспособность мышц, является АТФазная активность миозина, реализующая утилизацию энергии сократительным механизмом. В резуль­тате тренировки повышение выносливости работающих мышц соп­ровождается повышением активности АТФазы миозина в этих мыщцах.

Адекватное кровоснабжение работающих мышц - один из важнейших факторов, определяющих работоспособность мышечных во­локон . При мышечной ра­боте, как известно, увеличиваются потребности мышцы в О 2 , притоке субстратов, выведении С0 2 и других метаболитов, нор­мализации температуры, гидратации и т.д. В связи с этим объем­ный кровоток в скелетных мышцах при физической нагрузке мо­жет возрастать в 10-20 раз и составлять до 80% минутного объе­ма кровообращения при 15% в покое.

При сильных и максимальных сок­ращениях в мышцах достигается давление, заведомо превышающее артериальное, и кровоток в них прекращается. При беге с интенсивностью 3-5 м/с икроножная мышца человека снабжается кровью только в течение 55% времени, зани­мающего все движение.

Кровоснабжение мышц при нагрузке обеспечивается за счет трех основных факторов: 1) перераспределения кровотока между работающими и неработаю­щими органами; 2) увеличения объемного кровотока в мышцах во время сокращения; 3) увеличения кровотока сразу после сокращения.

Кровоток в работающих мышцах зависит от интенсивности работы. Пока развиваемое мышцей напряжение составляет от 5 до 10% максимального произвольного сокращения, объемный кровоток в мышце возрастает пропорционально силе сокращения во время нагрузки и после завершения сокращений снижается до исходного уровня в течение 1 мин. При нагрузке, вызывающей сокращения величиной 10-20% от максимального уровня, кровоток в работающих мышцах во время сокращения возрастает довольно незначительно, но быстро увеличивается сразу после конца сокраще­ния; при напряжениях, превышающих 20-30% максимального уровня для одних мышц и 50-70%- для других, кровоток во время сокращения прекращается, но после завершения сокращения кровоток возрастает тем больше, чем выше было на­пряжение мышцы при сокращении.

Ограничение кровотока в работающих мышцах при интенсивных сокращениях способствует накоплению в мышцах лактата и развитию утомления. При произвольных сокращениях с силой выше 20% от максимальной накопление лактата растет линейно с ростом силы. Максимальных значений накопление лакгата достигает при усилиях, равных 30-60% от максимального уровня.

Мышечную работу можно осуществлять довольно долго, если развиваемое мышцами напряжение не будет превосходить уровень 10-20% от максимального.

Возможность адекватного увеличения кровотока при нагрузке в значительной мере определяется плотностью капилляров на единицу объема мышцы. У нетренированного человека в мышце бедра плотность капилляров составляет 325 на 1 мм 2 , а у высокотренированных спортсменов-бегунов - около 500 на 1 мм 2 . В «медленных» волокнах по сравнению с «быстрыми» волокнами наблюдается более высокая плотность капилляров. Кровоснабжения мышцы - одно из звеньев, лимитирующих физическую работо­способность.

Механизмы изменения функции скелетных мышц при долговременной адаптации.

Систематические спортивные тренировки увеличивают функциональ­ные возможности двигательного аппарата. Максимальное увеличе­ние силы отдельных мышечных групп мо­жет достигать 200-300%; при движениях, вовлекающих в сокращение многие мышечные группы - 80-120%. Тренировка повышает также выносливость. Если максимальная скорость бега при нагрузке увеличивается на 28%, то выносливость - более чем в 5 раз.

Увеличение силы, скорости и точности движений в результате тренировки в значительной степени определяется адаптационными изменениями ЦНС, то есть в структурах аппарата регуляции. В результате длительной силовой тренировки повышается спо­собность моторных центров мобилизовать до 90% и более ДЕ (при 20-35% до трениров­ки). Адаптация к предельным физическим нагрузкам связана с форми­рованием в КБП систем взаимосвязанной (син­хронной и синфазной) активности, являющихся частью функцио­нальной системы управления движениями и обладающих высокой помехоустойчивостью. При тренировке происходит растормаживание заторможенных ранее мотонейронов, что увеличивает число ДЕ, участвующих в мышечной ра­боте. Все это позволяет полагать, что при формировали адаптации к фи­зическим нагрузкам совершенствование управления скелетными мышцами реализуется на всех уровнях регуляции.

В основе функциональной перестройки аппарата управления в процессе адаптации лежит активация синтеза нуклеиновых кислот и белков в нейронах, приводящая к структурным изменениям, по­вышающим работоспособность этих клеток. Активация синтеза РНК и белка в нейронах приводит к гипертрофии этих клеток.

Повышение работоспособности скелетных мышц в процессе тренировки связано с увеличением синтеза нуклеиновых кислот и белков в этих структурах, их массы и мощности.

В процессе адаптации к силовым нагрузкам происходит увеличение массы мышечных волокон - рабочая гипертрофия мышцы . При адаптации к нагрузкам на выносливость гипертрофия мышц либо не возникает, либо развивается в малой степени.

В процессе длительной адаптации к физической нагрузке повышается мощность системы энергообеспечения скелетных мышц . При тренировке па выносливость в большей мере происходит увеличение числа митохондрий и активности митохондриальных ферментов на единицу массы мышцы. Увеличивается способность мышц утилизировать пируват и жирные кислоты.

При адаптации к силовым нагрузкам не наблюдается такого увеличения мощности системы мито­хондрий в мышцах. В процессе адаптации к кратковременным боль­шим силовым нагрузкам возрастает мощность системы анаэробного энергообразования, что выра­жается в увеличении содержания в мышцах гликогена в 1,5-3 ра­за и активности гликогенсинтетазы, в увеличении мощности системы гликогенолиза и гликолиза. Нагрузка на выносливость приводит к увеличению синтеза митохондриальных белков в значи­тельно большей мере, чем белков ферментов гликолиза п гликоге­нолиза, а силовая спринт-нагрузка, напротив, приводит к большому росту интенсивности синтеза белков ферментов системы гликолиза и гликогенолиза. Нагрузка на выносливость приводит к повышению синтеза белков митохондрий не только в медленных волокнах мышцы, но и в быстрых, а силовая нагрузка приводит к росту синтеза ферментов гликолиза не только в быстрых, но и в медленных волокнах. Именно это, по-видимому, объ­ясняет тот факт, что в процессе адаптации в зависимости от на­грузки может наблюдаться не только преобладание массы волокон одного типа над массой другого, но и перестройка энергетического метаболизма обоих типов волокон скелетных мышц, приближаю­щая их к миокардиальным.

Увеличение мощности систем энергообразования сочетается при адаптации с ростом активности АТФазы актомиозина мышечных волокон . Это означает, что энергообеспечение в скелетных мышцах при адаптации возрастает также и за счет повышения мощности системы утилизации энергии в сократительном аппарате. Кроме того, в процессе тренировки на­блюдается увеличение массы белков СПР и мощности системы транспорта Са 2+ в мышцах.

Увеличение мощности системы митохондрий в мышцах является решающим фактором, определяющим повышение выносливости тре­нированного организма. Повыше­ние мощности системы митохондрий увеличивает спо­собность окислительного ресинтеза АТФ, способствует увеличению, интенсивности утилизации пирувата, уменьшению перехода его в лактат и, следовательно, уменьшению накопления лактата в мышцах.

В тренированном организме увеличение мощности системы митохондрий в скелетных мышцах значительно превыша­ет рост МПК и увеличе­ние выносливости коррелирует именно с ростом числа митохондрий, но не с величиной МПК. В результате тренировки выносливость возрастает в 3-5 раз, количество митохондрий в скелетных мышцах-в 2 раза, а МПК-только на 10-14%.

Одним из факторов, повышающих выносливость тренированного организма, является уменьшение сте­пени образования в митохондриях повреждающих свободноради­кальных форм кислорода и активации ПОЛ при интенсивной рабо­те и в покое. Увеличение мощности системы митохондрий обеспечивает тренированному организму экономию расходования гликогена при нагрузках. В основе этого эффекта лежит увеличение способности утилизировать при энергообразовании липиды.

Повышение работоспособности скелетных мышц в результате адаптации к физической нагрузке может быть связано также с уменьшением в 2-3 раза накопления во время работы аммиака, одного из воз­можных факторов, вызывающих утомление.

А даптация к физической нагрузке приводит к изменениям кро­воснабжения скелетных мышц . Происходит более экономное перераспределение крови в организме при на­грузке, благодаря чему мышечная работа не приводит к резкому снижению кровотока во внутренних органах. Это явление обеспечивается, во-первых, за счет усовершенствования при тренированности центральных меха­низмов дифференцированной регуляции кровотока в покое и при нагрузке в работающих и неработающих мышцах, во-вторых, за счет увеличения васкуляризации мышечных волокон и повышения способности мышечной ткани утилизировать О 2 из притека­ющей крови . Последнее связано с увеличением содержания миоглобина и мощности системы митохондрий в тренированных мышцах.

У высокотренированных спортсменов-бегунов количество капилляров в четырехглавой мышце бедра достигает 500 мм 2 при 325 мм 2 у нетренированного человека, в результате каждое мышечное волокно оказывается ок­руженным 5-6 капиллярами. В тренированных мышцах людей, адаптированных к бегу, количество капилляров, приходящихся на мышечное волокно и на 1 мм 2 сечения мышцы, возрастает на 40% по сравнению с данными для нетренированных людей.

Увеличение плотности капилляров происходит главным образом при адаптации к нагрузкам на выносливость. При тренировке силового характера не наблюдается изменений количества капилляров, приходящихся на одно мышечное волокно. При этом плотность капилляров в мышцах даже уменьшается. Это обстоятельство существенно для понимания механизма сниже­ния выносливости у силовых спортсменов высокого класса.

Рост мускулов возможен только благодаря адаптации организма к нагрузкам. Это должен помнить каждый спортсмен. Узнайте все об адаптации мышц к росту в бодибилдинге.

Влияние гомеостаза на мышцы


Организм человека всегда стремиться поддерживать баланс (гомеостаз). Для этого у него существует множество различных механизмов. Во время тренинга нагрузка заставляет большое количество параметров мускулов отойти от баланса. На степень этого смещения влияют различные факторы, например, интенсивность или характер физических нагрузок.

Когда занятие завершает и нагрузки снимаются, то в организме запускаются ответные механизмы, задачей которых является восстановление утраченного баланса. Таким образом, организм адаптируется к тем нагрузкам, которые использовал атлет. Одновременно с этим происходят определенные изменения, которые должны в будущем не допустить возникновения нового дисбаланса.

Таким образом, тренинг в бодибилдинге представляет собой направленный атлетом процесс приспособления организма к нагрузке. Адаптацию принято делить на два типа:

  1. Срочная - возникает при однократном воздействии на организм внешней нагрузки. К этому типу адаптации можно причислить восстановление энергетических запасов и ресурсов центральной нервной системы.
  2. Долговременная - ответная реакция, возникающая при накоплении многократных нагрузок, каждая из которых вызывала срочную адаптацию.

Роль суперкомпенсации в адаптации мышц


Работа мышц приводит к некоторым колебаниям внутренних параметров, например, снижается уровень креатинфосфата, истощаются запасы гликогена в мышечных тканях и т.д. Когда нагрузка прекращает воздействовать на организм, благодаря восстановительным процессам в определенный период времени уровень необходимых для работы мускулов веществ превышает исходный, который наблюдался до начала тренинга. Это явление принято называть суперкомпенсацией. По большому счету, это и является ростом мышечных тканей.

Также следует отметить две важные особенности этого явления:

  • Этап суперкомпенсации достаточно скоротечен и уровень всех энергетических веществ вскоре начинает возвращаться к исходному уровню. Если говорить проще, то при длительной паузе между тренировками атлет может потерять все, что было получено на протяжении всех предыдущих тренировочных занятий.
  • Чем больше энергии было потеряно во время тренинга, тем более интенсивными будут восстановительные процессы.
Однако вторая особенность проявляется только при определенных условиях. Когда нагрузки достаточно высокие, то процессы восстановления замедляются. Это в свою очередь сказывается на времени наступления этапа суперкомпенсации. Также с высокими нагрузками связано и состояние перетренированности, когда организм не способен восстановиться самостоятельно.

Аналогичным образом протекает и восстановление других тренируемых атлетом параметров. Сначала наблюдается снижение возможностей организма, после отдыха наступает этап суперкомпенсации.

Правила роста мышц


Сразу следует сказать, что рост мускулов возможен только в том случае, когда адаптация тканей мышц суммируется после каждого тренировочного занятия. При этом это суммирование должно проходить строго по определенным правилам.

Правило №1

При проведении повторного тренинга на этапе суперкомпенсации возникает положительное взаимодействие всех тренировочных эффектов. Это приводит к возникновению длительной адаптации и как следствие к росту мускулов. Прогресс продвигает с каждым маленьким шажком вперед. Безусловно, каждый атлет желает получить быстрый результат, но так, к сожалению не бывает.

Правило №2

Новый тренинг мышц после длительного отдыха не даст ожидаемого эффекта. Это связано с тем, что каждое такое тренировочное занятие начинается с низкого уровня.

Правило №3

Частые тренировочные занятия не приведут к росту, так как прерывается стадия восстановления. Для роста мышечные ткани обязаны не только восстановиться, но и несколько превысить прошлый уровень развития.

Необходимо сказать, что описанные выше правила работают только в долгосрочной перспективе и показывает, что определенный прогресс присутствует. В то же время в пределах нескольких тренировочных занятий вполне возможен тренинг на этапе недовосстановления. Это может дать положительный эффект в будущем.


Чтобы добиться поставленной перед собой задачи необходимо определить тот уровень нагрузки, благодаря которому и будет достигнут максимально возможный рост. Также следует рассчитать и время восстановления до этапа суперкомпенсации. После этого предстоит с определенной частотой нагружать организм. Однако это очень просто только на бумаге. На практике существует один серьезный нюанс.

Важно помнить, что рост мускулов является комплексным процессом, который затрагивает не только клетки мышечных тканей, но и большое количество других параметров. Скажем, суперкомпенсация уровня креатинфосфата возникнет уже спустя несколько минут после снятия нагрузки. Для восстановления запасов гликогена потребуется пара дней, а сами мышечные клетки могут восстанавливаться на протяжении нескольких дней. Как можно понять из всего выше написанного, адаптации мышц к росту в бодибилдинге достаточно сложный процесс, требующий большого внимания к себе.

Говоря о росте мускулов, невозможно не затронуть вопрос белковых соединений, которые необходимы для этого процесса. Каждому атлету хочется знать, какой именно тренинг способствует ускорению синтеза белков в мышечных тканях. К сожалению сегодня наука не готова ответить на этот вопрос. Существует несколько гипотез. Наиболее популярным является предположение, что при разрушении белковых соединений во время тренировочного занятия, впоследствии будет наблюдаться ускорение их синтеза. Однако пока сложно сказать, как близка эта гипотеза к истине.

О факторах, влияющих на рост мышц смотрите в этом видео.

Ты, наверняка, уже знаешь, в чем заключается основа работы мышц. Настало время рассказать о том, что влияет на развитие силы и объема мускулатуры и что помогает набрать мышечную массу.

Стремление организма к стабильности

Гомеостаз - это процесс, нацеленный на сохранение постоянства жидкостных систем организма. Вследствие тренировочной деятельности концентрация гормонов в крови, температура тела и другие элементы гомеостаза отклоняются от нормы. То, насколько будет нарушен внутренний баланс, определяет интенсивность нагрузок, а также особенности отдельного взятого организма. После того, как мышцы прекращают работу, системы тела человека начинают восстанавливать равновесие: появляется адаптация к нагрузкам - активируются адаптационные механизмы, которые помогут лучше переносить подобные воздействия.

Адаптация

Бодибилдинг - это медленное приспособление организма к усиленной мышечной работе. Выделяют два типа адаптации мышечной системы к физическим нагрузкам:

  • Срочная адаптация - это когда тренинг уже окончен. На этом этапе восстанавливаются затраты энергии, нервная система нормализует свою работу. Это реакция нашего тела на однократно перенесенный в результате тренировки стресс.
  • Долговременная - является последствием многократного повторения эффектов срочной адаптации.

Суперкомпенсация

В результате физических упражнений в мышцах истощаются ресурсы - гликоген, АТФ, креатинфосфат.

Кроме того, мышечные волокна травмируются под непривычным напряжением, утомляются, и их функциональные возможности падают. Естественно, после тренировок тело активизирует процессы, которые восстанавливают истощенные мышцы. Восстановление идет в 3 стадии:

  1. Сначала восстанавливается гомеостаз: становится меньше концентрация стрессовых гормонов, восполняются резервы энергии, возвращается в норму работа сердечно-сосудистой системы.
  2. Когда системы организма восстановились до исходного состояния, наступает период суперкомпенсации - когда физические возможности немного увеличиваются в сравнении с предыдущим уровнем.
  3. На этой стадии эффект срочной адаптации мышечной системы сходит на «нет», так как наш организм все-таки стремится сохранять равновесие. А раз не последовало дальнейшей нагрузки, то ему незачем адаптироваться. Зачем тратить драгоценные ресурсы?

Чтобы тренироваться наиболее эффективно:

  • промежуток отдыха до следующей тренировки должен длиться ровно столько, чтобы она приходилась на период суперкомпенсации;
  • другой немаловажный момент, который будет способствовать росту массы мышечной ткани и сил - интенсивность.

Причина в том, что чем больший объем нагрузок ударил по организму, тем большим будет ответ на интенсивное напряжение. Другими словами, чем жестче будет тренинг, тем большего прироста в силе и массе стоит ожидать.

Однако взрывные тренировки не всегда ведут к увеличению мышц. Очень объемный или слишком выматывающий тренинг замедляет быстроту восстановительных процессов. Череда таких тренировок может вести к перетренированности, что сильно отодвигает достижение результата.

Механизм восстановления схож в применении к самым разным навыкам. Достаточное напряжение ведет к утомлению, в это время функции упражняемого навыка снижаются, затем хороший отдых возвращает их в норму и следует стадия суперкомпенсации. Период ее действия ограничен, и если не дать соответствующую тренировку, то постепенно произойдет адаптация мышечной системы к физической нагрузке и функции вернутся к начальному уровню.

Правила тренировок для увеличения мышечной массы

Мускулатура будет расти, если изменения в адаптации организма к силовой нагрузке будут накладываться друг на друга, однако нужно соблюдать следующие правила, чтобы увидеть результат:

  • Тренировки должны проводиться в момент суперкомпенсации, когда мышцы полны сил.
  • Долгий отдых сводит на нет усилия по развитию гармоничного тела. Дело в том, что фаза суперкомпенсации действует ограниченное время, далее улучшенные на прошлой тренировке параметры понемногу приходят к начальному уровню.
  • Частые тяжелые тренировки тормозят и минимизируют рост, так как проводятся в стадии недовосстановления. Если продолжать нагружать себя, не дав достаточно отдыха, то на место прогресса придет регресс - ты сможешь делать меньше повторов в упражнении, сбавится вес штанги, рост мышц остановится.

Правила выше значимы на большом отрезке времени. Однако на коротких этапах тренировочного процесса, в микроциклах, атлеты используют фазу неполного восстановления, чтобы больше истощить мышцы и запустить мощный рост массы.

Теперь можно легко составить программу на массу тела, подумаешь ты. Но понадобится кое-что еще - выяснить объем нагрузки, который будет способствовать эффективному росту. Подробнее о подборе правильной нагрузки поговорим далее. На первых нескольких тренировках также нужно определить оптимальное время перерыва между ними, когда мышцы будут находиться в стадии суперкомпенсации. Если частота тренировок известна и подобран рабочий вес, остается только делать. Кажется, просто. Но есть загвоздка.

Рост мышц - это совокупность процессов, которые затрагивают множество других параметров организма, а не только мышечные клетки. Вместе с ростом мышечной ткани увеличивается капиллярная сеть, иннервация. Восстановление запасов гликогена требует до 4-5 дней, а, например, суперкомпенсация креатинфосфата происходит за 2-3 минуты после нагрузки. Неравномерное восстановление разных тренируемых функций выводит следующее правило:

Одновременная тренировка всех функций, помогающих расти мышечной массе, нереальна. Потому достичь результата сложнее, чем кажется на первый взгляд.

Прогресс

Чтобы мышцы получали нагрузку, приводящую к суперкомпенсации, потребуется увеличивать вес или количество повторений, это лишь примеры, методик усложнения тренировок великое множество.

Сделать тренинг сложнее поможет просто сокращение времени тренировки при выполнении того же объема работы. Или можно, наоборот, увеличить нагрузку, исполняя подходы в медленном темпе. Также, применяя усложненные варианты упражнений, можно добиваться обозначенной цели, вспомни, сколько видов отжиманий и планок придумано!

На этом этапе более подробно разберем самый доступный, популярный, но оттого не менее эффективный способ стимулировать рост мышц - увеличение тренировочных весов. Этот способ не может не работать. Подъем больших весов подразумевает, что есть чем этот вес толкнуть и удержать, а затем опустить обратно и повторить еще несколько раз. Способ простой и даже очевидный - добавлять отягощения. Даже полкилограмма. Играют роль.

Как же действовать на практике? Сейчас объясним. Опытным путем выясняем количество повторов, которое ты способен сделать в достаточном напряжении, допустим, у это от 6 до 8. Подбери вес на штанге, с которым получится чисто (в правильной технике самому) сделать 6 повторений повторений. Теперь на второй тренировке сделай 7 повторов, повышай это число, пока не достигнешь своего максимума. Когда упражнение будет даваться легко, добавь груз на снаряд, чтобы снова получилось сделать 6 раз. Далее снова доведи новый вес до 8 повторов. Так, с каждой тренировкой у тебя будут увеличиваться мышцы, а мотивация будет расти, ведь на нынешней тренировке вес на снаряде стал уже больше, чем в прошлый раз. А если больше - то и ты сильнее.

Прогресс измеряется скоростью набора мышечной массы

Этот факт и так давно понятен. Гораздо важнее, чтобы ее рост был постоянным. На длительном промежутке времени лучшая стратегия - увеличивать нагрузку понемногу и регулярно, а не рвать из последних сил неподъемный вес, рискуя себе навредить.

Эффективнее добавить маленькие блины или замки на штангу по 0.5 кг и повышать груз с более частой периодичностью, чем не доделывать подход или тужиться и делать его с кривой техникой. Также не забываем записывать свои результаты, для этого обычно заводят отдельную тетрадь или блокнот.

Построение тела - дело долгое и основательное. Прогресс измеряется тем, как быстро мышцы привыкают к нагрузке и с какой скоростью они растут. Но еще важнее сделать процесс роста постоянным. Наиболее продуктивное решение - не надрываться с фантастическими весами, а добавлять нагрузку по силам. Правильно увеличивать ее, понемногу и регулярно. Пока подъемный вес на штанге или в тренажере прогрессирует, организм вынужден приспосабливаться, рост мышечной ткани и есть один из элементов адаптации мышц к нагрузкам. И здесь лучшие друзья - дневник тренировок и блины от 0,5 до 5 килограмм.

Как мы увидели, увеличение весов и повторений происходит достаточно медленно. Такой темп помогает отрабатывать технику, что предупреждает травмы и заставляет мускулы результативнее работать, к тому же чем точнее ты выполняешь упражнение, чем лучше работает мышечная память - это тоже адаптация мышц к физическим нагрузкам и привыкание к определенным типам движений.

Работая в правильной технике, начинаешь лучше чувствовать свои мускулы, так, в будущем это поможет их наиболее эффективно нагрузить. Неправильная техника кроме опасности травмы несет еще одну неприятность - мышцы получаются бесформенные и не очень эстетически привлекательные.

Создание мышечных структур из белка

В человеческом теле молекулы белка синтезируются в клетках организма. Аминокислоты - это строительный материал для белков, из которых состоят мышцы, гормоны и ферменты нашего тела.

Это непростой и энергоемкий процесс, быстрота его протекания находится в зависимости от громадного числа разнонаправленных факторов. Главными из них являются гормоны, активирующие создание новых белков. При попадании в клетку они задействуют процесс, вписанный в структуру генетического кода. Кроме того, для формирования молекулы белка в клетке должно быть достаточно энергии и аминокислот. В противном случае роста не будет.

Таким образом, ключевыми факторами строительства белка являются:

  • значительная концентрация анаболических гормонов, выбрасываемых в кровь;
  • присутствие в нужном количестве аминокислот в клетках;
  • энергетические ресурсы.

Как благодаря синтезу белка увеличивается мышечная масса не до конца понятно. Существует несколько гипотез, одна из которых - гипотеза разрушения. Она гласит, что восстановление поврежденных мышечных тканей после нагрузок активирует сверх меры. Это и есть суперкомпенсация - рост мышц, бодибилдинг.

Проблема адаптации организма к физическим нагрузкам стала одной из актуальных проблем биологии и медицины во второй половине XX в. Адаптация - развивающийся в ходе жизни процесс, в результате которого организм приобретает устойчивость к определенному фактору окружающей среды. Понятия "адаптация" к физическим нагрузкам и "тренированность" организма тесно связаны друг с другом. Сущность адаптации к физическим нагрузкам заключается в раскрытии механизмов, за счет которых нетренированный организм становится тренированным, т.е. механизмов, лежащих в основе формирования положительных сторон адаптации, обеспечивающих тренированному организму преимущества перед нетренированным, и отрицательных сторон, составляющих так называемую цену адаптации.

Преимущества тренированного организма характеризуются тремя основными чертами:

· тренированный организм может выполнять мышечную работу такой продолжительности или интенсивности, которая не под силу нетренированному;

· тренированный организм отличается более экономным функционированием физиологических систем в покое и при умеренных, непредельных физических нагрузках и способностью достигать такого высокого уровня функционирования этих систем, который недостижим для нетренированного организма;

· у тренированного организма повышается резистентность к повреждающим воздействиям и неблагоприятным факторам.

Понимание механизма формирования тренированности составляет необходимую предпосылку активного управления этим процессом.

Любой адаптационный процесс в организме направлен на поддержание гомеостаза. Гомеостатические реакции имеют специфическую направленность. Поскольку метаболическая активность организма находится в строгой зависимости от макромолекул, прежде всего белков и нуклеиновых кислот, процессы адаптации должны сводиться к обеспечению макромолекулами жизнедеятельности организма. В процессе адпатации метаболизм "настраивается" на непрерывное получение организмом необходимых ему продуктов.

Адаптация организма к мышечной деятельности, как и к любому другому раздражителю, носит фазный характер. В зависимости от характера и времени реализации приспособительных изменений в организме можно выделить два этапа адаптации - срочный и долговременный.

Этап срочной адаптации - это ответ организма на однократное воздействие физической нагрузки. Срочные адаптационные процессы осуществляются непосредственно во время работы мышц. Их первоочередная задача заключается в мобилизации энергетических ресурсов, транспорте кислорода и субстратов окисления к работающим мышцам, удалении конечных продуктов реакций энергообмена и создании условий для пластического обеспечения работы мышц.

Этап долговременной адаптации характеризуется структурными и функциональными изменениями в организме, заметно увеличивающими его возможности. Этап долговременной адаптации развивается на основе многократной реализации срочной адаптации. В процессе долговременной адаптации организма под влиянием физических нагрузок активизируется синтез нуклеиновых кислот и специфических белков. Это создает возможность усиленного образования разных клеточных структур и нарастания мощности их функционирования.

На рисунке 34 приведена схема взаимосвязи отдельных этапов срочной и долговременной адаптации.

Под влиянием физической нагрузки происходит увеличение сократительной активности мышц, что приводит к изменению концентрации макроэргических фосфатов в клетке. Эти процессы стимулируют синтез АТФ и восстановление нарушенного баланса макроэргов в мышце, что и составляет начальное звено срочной адаптации. Срочные адаптационные процессы, в свою очередь, приводят к усилению синтеза нуклеиновых кислот и специфических белков при воздействии на определенные структуры мышц таких соединений, как креатин, циклический АМФ, стероидные и некоторые пептидные гормоны.

В основе работы организма любого живого существа, в том числе и человека, лежит взаимодействие с окружающей средой. Окружающая среда имеет свойство изменяться со временем. Организм же стремится оставаться в наиболее стабильном состоянии. Другими словами организму человека необходимо сохранять стабильность своего состава.

В данном противоречии заключается суть взаимодействия с внешней и внутренней средой. Любые изменения внешних воздействий приводят к изменениям мира внутреннего, которые направлены на восстановление равновесного состояния. В данном процессе заключается общий принцип взаимодействия, который называется адаптацией.

Организм можно считать адаптированным тогда, когда полностью или в наибольшей степени установлено равновесие. Данное явление называется состоянием адаптации, то есть то состояние, когда все системы вернулись в наиболее выгодное с энергетической точки зрения положение. С момента воздействия окружающей среды до формирования состояния адаптации проходит определённое время, за которое происходит процесс адаптации.

При выполнении физических упражнений происходит так называемая приобретаемая адаптация, которая кардинально отличается от врождённой адаптации. Врождённое приспособление организма вырабатывается в течение многих миллионов лет, как результат работы эволюции.

Приспособление к выполнению тех или иных упражнений можно довольно чётко разделить на срочную и долговременную адаптацию. Каждая из них необходима для сохранения равновесного состояния организма. И каждая из них использует имеющиеся ресурсы тела.

Срочная адаптация

Легче всего понять разницу на конкретном примере . Когда начинающий спортсмен впервые выполняет упражнение, например , то вследствие интенсивной работы мышц ног и спины значительно повышается потребность организма во многих питательных веществах. В первую очередь это касается кислорода и энергетического субстрата – аденозинтрифосфорной кислоты (АТФ).

  1. Кислород поставляется во все органы кровью из лёгких. Работающие мышцы очень быстро используют имеющийся кислород крови и выделяют продукты жизнедеятельности, в том числе углекислый газ. Это вещество воздействует на специфические клетки ствола головного мозга.
  2. Дыхательный центр посылает импульсы к диафрагме, межрёберным и многим другим мышцам с большей частотой. В результате увеличивается частота и глубина дыхательных движений. В кровь поступает больше молекул кислорода, а углекислый газ эффективнее выводится.
  3. Но изменений функционирования дыхательной системы недостаточно. Необходимо быстрее доставлять обогащённую кровь к работающим органам. В работу вступает сосудодвигательный и другие центры.
  4. Усиливается работа сердца: увеличивается частота сокращений и объём крови, который выбрасывается за одно сокращение. Кроме того, повышается артериальное давление для создания более эффективного градиента концентраций веществ между кровью и тканями.
  5. В то же время организм переводит «ненужные» в данный момент системы в режим энергосбережения. Это касается в первую очередь пищеварительного тракта. Так как усвоение питательных веществ, их расщепление и синтез необходимых организму компонентов на данном этапе не играет столь важной роли.

Все перечисленные изменения возникают фактически под нагрузкой и исчезают спустя короткое время после прекращения выполнения упражнения. Они направлены на сохранение организма способности нормально функционировать в новых условиях по принципу «здесь и сейчас». Поэтому этот вариант адаптации называется срочной или быстрой адаптацией.

Кроме изменений в функционировании систем обеспечения происходит перестройка метаболизма в мышечных тканях. Расширяются ранее дремлющие сосуды для более эффективного кровоснабжения. Активируются ферменты, расщепляющие глюкозу, для получения необходимой для работы энергии АТФ. Также активируются ферменты, расщепляющие гликоген – запасная форма существования глюкозы в мышцах и печени.

Источники энергии при физической нагрузке

В зависимости от типа нагрузки организм постепенно вовлекает в работу разные источники энергии. Если тренировка относительно короткая, но тяжёлая, то энергия берётся из глюкозы крови, а также из гликогена. Метаболизм клеток меняется настолько, что они приобретают способность поглощать глюкозу без инсулина. Это полезно знать тем, кто страдает сахарным диабетом.

Если же нагрузка длительная, но выполняется в умеренном темпе, то гликоген, как источник энергии, быстро исчерпывает свой потенциал. В таком случае организм начинает получать энергию из жировых клеток – интенсифицируется процесс окисления жирных кислот. Причём этот процесс происходит более или менее равномерно по всему телу. Данный факт необходимо понимать тогда, когда перед тренировками ставится . И становится понятным, что локальное сжигание жира за счёт изолирующих упражнений не имеет под собой никаких физиологических оснований.

Долговременная адаптация

Если человек твёрдо решил заниматься спортом, не пропускает тренировки, соблюдает режим и диету, то организм переходит на новый уровень адаптации. Необходимо отметить, что срочная адаптация никуда не исчезает. Она возникает во время любой тренировки. Однако её эффективность значительно повышается с ростом тренированности.

Спустя несколько недель регулярных тренировок происходит адаптация нервной системы к новым условиям жизнедеятельности. Это проявляется в улучшении координации, экономности движений и уменьшении утомления после упражнений. В головном и спинном мозгу формируются новые связи между нейронами, контролирующими работу мышц. В первую очередь это касается внутримышечной и межмышечной координации.

Под внутримышечной координацией подразумевается вовлечение в целенаправленную работу максимального количества двигательных единиц. Когда человек ещё недостаточно тренирован, то его мускулатура не готова к работе, как единое целое. Поэтому движения выполняются неуклюже, по невыгодной траектории с затратой чрезмерного количества энергии. И только со временем мозг «учится» эффективно управлять телом.

Адаптация мышц к нагрузке

Этот процесс длительный и многосторонний. В результате комплексного влияния нервных влияний и изменения гормонального фона возникает множество структурных и функциональных изменений. Постепенно увеличивается мышечный поперечник за счёт того, что в мышечных клетках увеличивается содержание сократительных белков. Также допускается увеличение количества отдельных клеток. Сила прямо пропорциональна мышечному поперечнику. Поэтому неудивительно, что в подавляющем большинстве случаев человек с более развитыми мышцами значительно сильнее, чем человек с небольшой мускулатурой.

Физические нагрузки также воздействуют на вспомогательный аппарат мышц. Увеличивается количество капилляров, которые снабжают кровью мускулатуру. Таким образом, эффективность питания значительно возрастает. Обмен веществ в клетках становится быстрее, лучше протекают процессы освобождения от продуктов жизнедеятельности.

В последнюю очередь происходит адаптация соединительнотканного аппарата мышц. Фасции, сухожилия, а также связки кровоснабжаются значительно хуже, чем сократительные единицы. Но при достаточной длительности тренировок их адаптация также достигает значительного уровня. В результате повышается эффективность передачи мышечного усилия на костные рычаги, снижается риск травмирования.

Таким образом, в результате регулярных тренировок с соблюдением правил техники безопасности и адекватности роста нагрузок организм человека постепенно адаптируется ко всё большим и большим физическим нагрузкам. Мало того, стало известно, что при повышении устойчивости к физическим стресса возрастает устойчивость и к стрессам эмоциональным, психическим.